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A numerical exploration of multiple-cell solutions for the flow between a rotating 
and a stationary disk is carried out systematically by the continuation method. 
The paper confirms and extends the work of Mellor, Chapple & Stokes. The results 
include the discovery of one-, two-, three- and five-cell solution regions which 
have not been reported before. 

1. Introduction 
The problem of the steady incompressible flow between two infinite rotating 

disks has attracted continued attention in the past because it offers the possi- 
bility of obtaining an exact solution to the Navier-Stokes equations. For, as 
Batchelor (1951) showed in his extension of von KArmAn’s (1921) solution to the 
problem of a single rotating disk, if the axial velocity of the flow is assumed to 
be independent of the radial distance, then the Navier-Stokes equations can be 
reduced to a two-point boundary-value problem for a system of two nonlinear 
ordinary differential equations. Lance & Rogers (1962) treated the problem 
numerically for various values of the ratio of the angular velocities of the two 
disks and for a range of solutions from Stokes flow to typical boundary-layer 
flows. Subsequently Mellor, Chapple & Stokes (1968) presented a rather complete 
numerical treatment of the problem when one disk is rotating while the other 
is stationary. In  addition they have produced further analytical results and 
experimental data. They found multiple-cell solutions (a cell is defined by planes 
parallel t o  the disks on which the axial velocity vanishes). Mellor et al. discovered 
two one-cell branches, one of which -we call it the ‘principal branch’ - is the set 
of solutions discussed qualitatively by Batchelor (1951) and is the one for which 
the experimental data were taken, the other of which-we call it the ‘von KAr- 
mbn branch’-leads in the limit to von KkmAn’s (1921) solution for a single 
disk. Mellor et ul. (1968) also found one two-cell and one three-cell solution 
branch. 

Mellor et al. converted the Navier-Stokes partial differential equations into 
ordinary differential equations and treated the resulting two-point boundary- 
value problem as if it  were an initial-value problem. They carried this out by 
selecting trial values for the missing initial conditions and integrating across 



54 S. M .  Roberts and J .  S. Xhipman 

the gap between the disks until a disk spacing was found at which the terminal 
boundary conditions were satisfied or until overflow occurred. Theirs appears to 
be a trial-and-error procedure with the disk spacing determined as a consequence 
of the solution. 

In  more recent work Ockendon (1972) discussed the asymptotic solution for 
steady-state flow above an infinite rotating disk with suction. Nguyen, Ribault & 
Plorent (1975) presented numerical data on the multiple-cell solutions for flow 
between coaxial disks of Stewartson type (velocity entirely axial outside the 
boundary layer) and of Batchelor type, and also experimental data which indicate 
that the physical flow is of the Batchelor type. 

In  this paper we present through the continuation method of Roberts & Ship- 
man (1967, 1968) an orderly way to explore for the multiple solutions associated 
with this problem by treating the two-point boundary-value problem as one in 
which the disk spacing is specified beforehand. The continuation method enables 
the principal branch of the one-cell solutions to be computed automatically and 
systematically starting from scratch, so to speak. With a minimum of manual 
intervention we were able to transfer to the von KBrm&n branch, and then by 
continuation to compute that branch of the one-cell solution. Further, by a 
manual exploration technique similar to that of Mellor et al., we formed trial 
guesses for the missing initial conditions corresponding to multiple-cell solutions. 
Once these initial guesses had led to a converged solution (via a shooting method) 
we could generate automatically an entire branch of a multiple-cell solution by 
continuation. In  this way we reproduced and extended the two- and three-cell 
branches of Mellor et al. 

In  the course of our work we have found one-, two-, three- and even five-cell 
solutions which have not been reported before. 

While we have confined our computations to the problem in which only one 
disk is rotating in order to compare the results with those of Mellor et al., our 
methods are equally applicable to the cases in which both disks are rotating, either 
in the same direction or in opposite directions. 

2. Problem statement 
Consider the physical situation of two disks, one stationary and one rotating, 

set a distance of x = 1 units apart along the axis, where z = 0 refers to the station- 
ary disk. For steady incompressible flow of a viscous fluid the governing equa- 
tions consist of the equation of continuity and the three equations of motion. 
Under axial symmetry these equations are 

(2.1a) 

(2.lb) 

(2.14 

( 2 . 1 4  
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and the boundary conditions are 

(2 .2)  1 u(r, 0) = v(r, 0 )  = w(r, 0 )  = 0, 

u(r,Z) = 0, v(r,Z) = fir, w(r,Z) = 0, 

where u = radial velocity, v = tangential velocity, w = axial velocity, fi = 
angular velocity of rotating disk, r = radial co-ordinate, z = axial co- 
ordinate (0  < z < Z), Z = disk spacing, v = kinematic viscosity and p = density. 

Mellor et al. (1968), following Batchelor (1951), assumed as one form of the 
similarity solution the following: 

} (2.3) 
2 = ( v / w ) 3 y ,  v = wrg(r) ,  w = -2 (wv)&h(7) ,  u = wrh‘(q), 

p / p  = o v P ( y )  -I- ihu2r2, 

which when substituted into (2 .1)  yield the nonlinear ordinary differential equa- 
tions 

h”’ + 2hh” - h’2 = - 92, ( 2 . 4 ~ )  

(2 .4b )  

( 2 . 4 ~ )  

9’’ + 2hg’ - 2h‘g = 0, 

P’ = - 2(h” + 2hh’) 
h 

and which when substituted into (2 .2)  yield the boundary conditions 

h(O) = h(7,) = h’(O) = h’(qt) = g ( 0 )  = 0, g’(0) = 1, (2 .5 )  

where yr is the final value of 7, that is, the disk spacing. In  addition to (2.3) and 
(2 .4) ,  Mellor et aZ. gave another scaling definition, which is particularly well 
suited to small values of the Reynolds number R, and an alternative boundary 
condition to the last condition in (2 .5 ) ,  namely g(y,)  = 1. 

For our computations we converted the second- and third-order differential 
equations in (2 .4 )  into a set of six first-order ordinary differential equations, 
which include the variable A, by the definitions 

y1 = h, y2 = h’, y3 = h”, y4  = g ,  y5 = g‘, y6 = A. (2 .6)  

The differential equations (2 .4 )  now become 

with the boundary conditions 

Y L O )  = Y A Y J  = Y!2(0) = YZ(%) = Y4(0) = 0, Y5(0)  = 1 .  ( 2 .8 )  

Once (2.7) and (2.8) have been solved, the pressure P can be found from 
( 2 . 4 ~ )  by quadrature. Although all our computations were carried out with the 
first-order system (2.7) and (2.8) since the existing computer program we applied 
to the problem is designed for such systems, we shall discuss our results in terms 
of the functions g and h of Mellor et al. (1968). 
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3. Solution method and continuation 
We employed the shooting method to solve the two-point boundary-value 

problem consisting of the system of nonlinear ordinary differential equations 
(2.7) and the explicit boundary conditions (2.8). The shooting method is an itera- 
tive technique which is initiated with trial values of the missing ‘initial condi- 
tions’, in this case h”(0) and h”(0). At each stage of the iteration ‘corrected’ 
values of the missing initial conditions are systematically computed, and under 
appropriate conditions converge to the true values. See Roberts & Shipman 
(1972) for a detailed discussion of the method. 

The Continuation method of Roberts & Shipman (1 967, 1968) was devised to 
deal with unstable or numerically sensitive two-point boundary-value problems. 
These are problems in which, for trial values of the missing initial conditions 
close to but not equal to the true values, it  is impossible to integrate the dif- 
ferential equations over the interval of interest, say [to, t j ] ,  without overflow 
a t  some intermediate t (to < t < tf). When applied to such cases, the continua- 
tion method begins by solving the original two-point boundary-value problem 
over the shorter interval [to,tl] (to < t ,  < t f )  with the final values prescribed at 
t j  imposed at  t,. The converged values of the missing initial conditions are then 
taken as trial values for the missing initial conditions for the next two-point 
boundary-value problem, over the interval [to, t,] (tl < tz -= t f ) .  Under favourable 
conditions, after a finite number n of steps, a point t, will be reached such that 
t, = t j ,  at which time the original two-point boundary-value problem will have 
been solved. For each interval of the continuation method the boundary-value 
problem is solved by the shooting method. For more details on continuation see 
Roberts & Shipman (1967, 1968). 

I n  the present application of continuation, while the mechanism is the same 
the spirit is somewhat different. Here we begin with the counterpart of tl, that is 
a value of vl, and solve (if possible) the two-point boundary-value problem (2.7) 
and (2.8) over the interval [ O , q z ] .  Then by continuation we solve the problem 
over the interval [0, ql+Aar,], where Aql may be positive or negative. Thus, if a 
solution is known for a certain value of rl, other solutions may be found from it 
by continuation in a systematic fashion, and a complete branch of solutions 
generated. 

4. Discussion of results 
We began by computing the principal branch of the one-cell solution. To start 

the process we considered the limiting case in which qz = 0 and the Reynolds 
number R = 0, where it can be argued that since there is no axial flow h(7) is 
identically zero and therefore h”(0) = h”(0) = 0. There is in fact an inconsistency 
in this limiting case: since there is no tangential flow on the stationary disk, but 
there is tangential flow on the moving disk, g ( 0 )  is required to be both zero and 
non-zero. However, because our purpose in considering this case was to obtain 
initial guesses for the missing initial conditions h”(0) and k ” ( O ) ,  and because we 
actually began the computation not with rl = 0 but with a small non-zero value 
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of ql, this theoretical inconsistency was of no practical consequence. In  fact we 
assigned the values h”(0) = h”’(0) = 0 as initial guesses for the missing initial 
conditions for the problem with ql = 1. The shooting method converged in three 
iterations to the presumed true values of the missing initial conditions. Thus, 
starting with the converged initial conditions for ql = 1, the principal branch of 
the single-cell solutions was computed by the continuation method, with Aql fwst 
set equal to 0-5 up to ql = 2-5 and then set equal to 0.25 for the remainder of the 
computation. In  table 1 (not shown)f- we give some of the results of our computa- 
tion method$ interleaved with some of the results of Mellor et al. It can be seen 
that the two sets of results blend smoothly with one or two exceptions. These 
may be explained by the fact that when we checked the results of Mellor et al. by 
integrating forward with their initial conditions, first with a four-point Runge- 
Kutta method (with step size = 0.05) and then with the extrapolation method of 
Bulirsch & Stoer (1966), which adjusts the step size (set initially at 0.05) and the 
order of integration such that a preassigned accuracy is guaranteed, we found 
that the final conditions were met to an accuracy only of I On the other hand, 
with our converged values of the missing initial conditions, integration by either 
method generated terminal conditions that satisfied the final boundary con- 
ditions to an accuracy of 110-111 or better. This indicates that the initial values of 
Mellor et al. are slightly in error. As a check we recomputed the solution for 
qz = 2.44 and for T~ = 6-18. We found that the missing initial conditions in our 
computations for ql = 2.44 are h“(0) = - 1.000359450 and h”’(0) = 1.701 975 910 
compared with the results h”(0) = - 1.0 and h”(0) = 1.702 of Mellor et al. For 
qr = 6.18 we obtained h”(0) = - 1.218713168 and h”(0) = 1.409696064, while 
Mellor et at. obtained h”(0) = - 1.218 715 and h”(0) = 1.40970. Thus for these two 
cases differences in the initial conditions of the order of 110-41 are sufficient to 
account for the reported accuracy of the terminal conditions. Nevertheless, we 
confirmed the solution of Mellor et al. for the principal branch in all important 
respects, and furthermore were able to compute the solution automatically with 
no a priori information. 

Since qr decreases along the von KkmBn branch of the one-cell solutions as 
given by Mellor et al., we attempted to compute this branch by initially perturb- 
ing slightly the values of h”(0) and h”(0) given in table 1 for ql = 9-75 in order to  
locate a point on this branch, after which we proceeded by continuation. To be 
explicit, we set as our trial values h”(0) = - 1.218771 879 and h”(0) = 1-4 and by 
a trial-and-error process tried to solve the boundary-value problem for various 
values of ql until the problem converged a t  qz = 6.5. This put us on the von K k -  
mBn branch, which we then followed by continuation until ql = 5-25. We could 
have continued further but, since we had achieved our aim of finding the von 
KbmBn branch, we chose to  explore other regions of interest. Table 2 (not 

t Tables 1-5 are not exhibited in this paper, however copies of the complete tables 
are available from the authors or the JFM Editorial Office, DAMTP, Silver Street, Cam- 
bridge CB3 9EW. 

2 To facilitate comparison with the data of Mellor et al. (1968) in their table 2, we 
give in our tables 1-5 the same information, namely A“(O), h”’(O), vt ,  g(vz), g’(qa), R, A and 
ct’( 1). 
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shown) gives the results of applying the continuation method to the von KBrmBn 
branch with interleaved results of Mellor et al. As a possible alternative approach 
to locating a point on the von KBrmBn branch, we could have employed the 
asymptotic solution for R -+ 00, the Bodewadt (1940) solution, as discussed by 
Mellor et al. (1968), to provide trial values for h”(0) and h”(0) for some ql. 

We now consider the multi-cell cases. In  the paper of Mellor et al. the impression 
is given that each one-cell, two-cell and three-cell region is isolated and unrelated 
to other multiple-cell regions. In  our investigations we have found this to be 
only partially true. We learned that, once we could locate, say, a two-cell branch, 
then by continuity we could sometimes find a contiguous one-cell or three-cell 
region and we learned that the transition from one multiple-cell region to another 
could indeed be smooth. On the other hand we also discovered some regions which 
were in fact isolated. 

Table 3 (not shown) lists the results of our exploration of a three-cell and 
adjacent two-cell regions. Interleaved with our data are the results of Mellor 
et al. With few exceptions the two sets of data blend well. As a starting point 
we chose for the trial initial conditions h”(0) = - 1.0 and hl’’(0) = 3.48 (which 
correspond to the converged conditions of Mellor et al. for ql = 5.215) and 
qi = 5-25. After these trial initial conditions converged to yield a three-cell 
solution we explored this branch for both positive and negative values of Avl 
by continuation. For the range of initial conditions considered, the three-cell 
solutions lie in the interval 4-74 < ql < 5-50. We could not extend the solution 
by continuation below ql = 4-74. At qr = 4.74 our Reynolds number was - 921,f 
which exceeds the limiting Reynolds number found by Mellor et al. for their three- 
cell data. Beyond ql = 5-50 there was a smooth transition from three- to two-cell 
solutions. This cell transition corresponds to h“(0) passing from a negative value 
to zero at ql = 5-510 and then remaining positive for increasing values of ql. The 
two-cell region in the interval 5.10 < ql < 6.00 appears to be a new discovery 
since it was not reported by Mellor et al. We were able to continue the two-cell 
branch mathematically from ql = 6.00 to 11.7, at which point we arbitrarily 
stopped our research. However, beyond ql = 6.00, A, the rescaled radial pressure 
gradient, became negative, and this implies that for some radial distance the 
pressure will become negative, which cannot occur in a real Aow. 

In  the two-cell solutions the flow pattern is such that in the first cell the axial 
flow is towards the stationary disk and in the second cell the axial flow is away 
from the rotating disk. The two-cell solutions reported in table 3 differ from those 
reported by Mellor et al. since in table 3 h”(0) > 0, A M 10-3 and R M -400, 
while in the data of Mellor et al. h”(0) c 0, A M 2.7 and R E - 70; see figure 1. 

The data in table 3 were plotted as h”(0) us. - h ( O )  in figure 1 with Reynolds 
numbers indicated at some of the points. The plot yielded a ‘hook’ at  a Reynolds 
number of - 921 similar to the ‘hook’ for the one-cell branch shown by Mellor 
et al. in their figure 2. They could not obtain a solution for the principal branch 
of the one-cell problem beyond a Reynolds number of 337. 

Table 4 (not shown) lists the results of our exploration of adjacent two- and 

7 We have adopted the convention of Mellor et al. of reporting the Reynolds number 
ae negative when g(7)  is negative. 
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FICURE 1. h”’(0) w8. -h”(O) for multi-cell flow regions. R = Reynolds number. ---, 
table 3 data; - - -, table 4 data; - , table 6 data. 

one-cell regions. Interleaved with our data are the results of Mellor et al. The two 
sets of data blend well. As a starting point we chose for the trial initial conditions 
h”(0) = -2.0 and h”’(0) = 7.235 (which correspond to the converged conditions 
of Mellor et al. for qz = 6.582) and qz = 6.6. After these trial initial conditions had 
converged to yield a two-cell solution we explored this branch with both positive 
and negative values of Avr by continuation. For the range of initial conditions 
considered the two-cell branch lies in the interval 6.582 < y z  < 6-945. By a 
smooth transition the adjacent one-cell region in table 4 lies in the interval 
7.0 < q, < 7.2. The table 4 data represent distinctly isolated solutions; see 
figure 1. For the range of initial conditions considered it is not possible to find 
solutions for q, < 6.582 or qz > 7.2. It is interesting to observe that, although 
both table 3 and table 4 report two-cell branches, the conditions under which 
two cells exist are quite different. For example, in table 3, h”(0) > 0, A M 10-3, 
R M - 400 and @( 1) M - 12, while in table 4, h”(0) < 0, A M 2.7, R M - 70 and 

Although Mellor et al. felt that they had found all the one-cell solutions, our 
investigations have turned up another one-cell branch, as reported in table 4. 

c‘( 1) M - 19. 
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As h”(0) changes sign from negative to zero the two-cell branch changes into a 
one-cell branch. Referring to figure 1, we have by continuation extended the 
two-cell branch across the h”(0) axis but were not able to extend it to the h”(0) 
axis. As the h”’(0) axis is crossed, the solution changes from having two cells to 
having one. The single-cell solution is characterized by flow away from the 
rotating disk as in figure 1 of Batchelor (1951), for the problem of a single 
rotating disk. If we compare the one-cell solution data in tables 1 and 2 with the 
one-cell solution data in table 4 we find that h”(0) and h”’(0) for the principal 
branch and the von KArmAn branch are comparable while the initial conditions 
in table 4 are quite different. Furthermore, A is of the order of 10-1 for 
the principal branch, of the order of for the von KArmAn branch and of the 
order of 2.7 for the table 4 data. At q, M 7, R M 170 for the principal branch, 
R a -4425 for the von KArmAn branch and R a -58 for the one-cell data of 
table 4. 

We conjecture that any solution branch, with the exception of the principal 
one-cell branch, can be continued across the h’”(0) axis, and that one cell will be 
lost in crossing this axis. A plausible argument for this conjecture runs as fol- 
lows: in the neighbourhood of the stationary disk, that is, for q Q 1, we have by a 
Taylor series expansion h(q) M $h“( 0) q2 + QhqS. If h”(0) < 0, then h(q) will have 
a root, and consequently the flow will have a cell at (approximately) 

As h“(0) increases to zero, qo also approaches zero, so that the corresponding cell 
disappears. When h”(0) becomes positive qo becomes negative, so there is no cell 
corresponding to this value. 

In  the final phase of those of our computations described here, we sought 
multiple-cell solutions of higher multiplicity than those previously reported (that 
is, three-cell solutions). Our method of finding these high multiplicity solutions 
was to start with the known converged initial conditions for a two- or three-cell 
problem and integrate forward as in an initial-value problem over a larger 
interval than in the two- or three-cell problem until q = 10 or until overflow. If 
upon inspection of the profde we discovered that h(q) changed sign more than 
three times, we took the q a t  the last sign change as the ql for a two-point boundary 
value problem whose trial missing initial conditions were the h”(0) and h”’(0) of 
the two- or three-cell problem. By this preliminary exploration we were able to 
discover a five-cell branch. Table 5 (not shown) lists the results of our five-cell 
computations plus some adjacent two- and three-cell solutions. The data in 
table 5 were generated starting with h”(0) = -2.0 and h”’(0) = 7.235 (which 
correspond to a two-cell solution of Mellor et al. at q, = 6.582) and q, = 9.6 and 
continued for positive and negative values of Ay,. Converged solutions for the 
five-cell branch were found for the interval 8-66 < qr < 9.6. A Aql of - 0.05 was 
employed from q, = 9.40 to ql = 8-80. Overflow occurred when we attempted to 
continue the solution from q, = 8-80 to 8-75 with Aqz = - 0.05. However, when 
we selected Aqr = - 0.02 we were able to continue solving the problem success- 
fully from qr = 8.80 to ql = 8.66. We did not attempt to pursue continuation 
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FIGUBE 2. h(7) us. 71 for five-cell flow region. 

for the five-cell branch for smaller values of ql. While we experienced overflow 
in trying to continue from qr = 8-80 with Aql = -0.05, we were nevertheless 
successful in computing a solution with Aql = -0.10 (at q1 = 870) and then 
continuing with Aql = - 0.10 to  qr = 8.60 and 8.50. However the last three eolu- 
tions are on a two-cell branch. The last three lines of table 6 represent the data 
for this two-cell branch. The two-cell solutions do not represent a smooth tran- 
sition from the five-cell branch but rather a jump to a different quadrant in the 
h"(O), h"'(0) plane; see figure 1. Since A is negative, we once again have a situation 
where the pressure will become negative at some radial distance. In  the interval 
9.7 < ql < 9-8 we have a three-cell branch, which was generated by a smooth 
transition from the five-cell branch starting at qz = 9.6 with Aqz = 0.10. We did 
not attempt to continue above qr = 9.8. 

In figure 1 we may observe how the table 5 data for the five- and three-cell 
solutions blend with the two-cell data in table 4. This should not be too surprising 
since the data in table 5 were developed from one of the two-cell solutions in 
table 4. 

A typical profile of h(q) vs. q is given for the five-cell case at ql = 9.6 in figure 2. 
It will be noted that the third cell (counting from q = 0 or the stationary disk) 
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is very narrow and that h(q) is barely negative, so that one may wonder whether 
in fact five cells exist. To check this we took the initial conditions for the con- 
verged solutions of almost all the five-cell problems and recalculated the profiles 
as an initial-value problem by the precision integration method of Bulirsch & 
Stoer (1966). In  every case we confirmed numerically that the five cells indeed 
existed and the boundary conditions were satisfied. For the five-cell problems 
A is of the order of 10-3 and the Reynolds number R M 5000. 

As a practical consideration it is interesting to note that the torque exerted by 
the fluid on the rotating disk, which is proportional to G'( l), increases with the 
number of cells generated. Therefore it takes more power to drive the rotating 
disk in a multi-cell state than in the single-cell state. 

5. Conclusions 
We have applied the continuation method to the computation of the flow 

between a rotating and a stationary disk. We have shown how the continuation 
method enables the principal branch of the single-cell solution to be generated 
automatically and systematically. The generation of the other branches of the 
solutions found by Mellor et al. (1968) could proceed automatically once a point 
on the branch had been found. In  the course of our computations we confirmed 
and extended the results of Mellor et ab. (1968), and in particular we have identi- 
fied new one-, two- and three-cell branches, as well as a five-cell branch. From 
our investigations it would appear that there exists a multitude of solution 
branches. Determination of the distribution of the branches in, say, the h"(O), 
h"(0) plane awaits further numerical or analytical study. 

We wish to acknowledge Dr G. N. Lance, Chief, Division of Computing Re- 
search, Commonwealth Scientific and Industrial Research organization, Can- 
berra City, Australia, who kindly suggested this problem to us with the challenge 
to find multiple-cell branches in a systematic manner. 
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